247 research outputs found

    Extensive Conservation of Linkage Relationships Between Pea and Lentil Genetic Maps

    Get PDF
    A 560-cM linkage map consisting of 64 morphological, isozyme, and DNA markers, has been developed from an interspecific cross (Lens ervoides × L. Culinaris). In addition, nine markers were scored that assorted independently of any of the multilocus linkage groups. Comparison of this map with that established previously for Pisum sativum reveals eight regions in which linkages among marker loci appear to have been conserved since the divergence of the two genera. These conserved linkage groups constitute at least 250 cM, or approximately 40% of the known linkage map for Lens. The two genera represent disparate lineages within the legume tribe Vicease, indicating that all members of this tribe may possess linkage groups similar to those identified in Lens and Pisum. Instances where the Pisum and Lens maps differed included the regions surrounding the 45S ribosomal tandem repeats and the position and distribution of the genes encoding the small subunit of ribulose bisphosphate carboxylase. We also found a highly repeated sequence unique to Lens that maps within a linkage group shared between the two genera and a cDNA sequence that displays significant variation in copy number within the genus Len

    Inheritance and Linkage Relationships of Morphological and Isozyme Loci in Lentil (Lens Miller)

    Get PDF
    Allozyme polymorphisms for 18 loci are described and their monogenic inheritance is demonstrated. We investigated linkage relationships among the 18 isozyme loci as well as four genes controlling morphological traits. Six small linkage groups were identified, containing 14 of the loci analyzed. Several of these groups appear to be conserved between Lens and Pisum, indicating that this intergeneric comparison may expedite genetic studies and breeding programs in both crop

    Simulation study of a highly efficient, high resolution X-ry sensor based on self-organizing aluminum oxide

    Full text link
    State of the art X-ray imaging sensors comprise a trade-off between the achievable efficiency and the spatial resolution. To overcome such limitations, the use of structured and scintillator filled aluminum oxide (AlOx) matrices has been investigated. We used Monte-Carlo (MC) X-ray simulations to determine the X-ray imaging quality of these AlOx matrices. Important factors which influence the behavior of the matrices are: filling factor (surface ratio between channels and 'closed' AlOx), channel diameter, aspect ratio, filling material etc. Therefore we modeled the porous AlOx matrix in several different ways with the MC X-ray simulation tool ROSI [1] and evaluated its properties to investigate the achievable performance at different X-ray spectra, with different filling materials (i.e. scintillators) and varying channel height and pixel readout. In this paper we focus on the quantum efficiency, the spatial resolution and image homogeneity

    Duplication of Aldolase and Esterase Loci in Cicer (Cicereae Alef.)

    Get PDF
    The genetic control of fructose bisphosphate aldolase (ALDO, EC 4.1.2.13) and esterase (EST, EC 3.1.1.2) isozymes in Cicer was studied by starch gel electrophoresis. Fixed heterozygote enzyme phenotypes were observed in homozygous lines for both Aldo-1, Aldo-2 and Est-4, Est-5. Crosses between the individuals carrying different alleles of the duplicated genes gave rise to asymmetrically staining bands for both enzyme systems. Subcellular localization studies demonstrated that the products of duplicated aldolase loci are present in the plastids, whereas duplicated esterase isozymes were found in the cytosolic compartment. Selfing and crossing experiments revealed that there are two nuclear genes encoding the plastid specific ALDO isozymes (Aldo-1 and Aldo-2). Similarly, EST-4 and EST-5 isozymes are specified by two nuclear genes (Est-4 and Est-5). No linkage was found between any of the duplicated genes and the other isozyme loci examined in this study. Taxonomic distribution of both duplications was examined in the electrophoretic survey of the related species. Present evidence suggests that these duplications are unique and probably occurred only in this monophyletic tribe, Cicereae, since no duplication was reported in the related genera. No evidence for mutations silencing any of the duplicated copies was detected in the genus. Although the mechanism for duplications is not known, evidence for translocations in Cicer and the existence of a similar linkage between ALDO and EST isozymes in related genera indicate that both duplications may have arisen simultaneously via duplication of a chromosomal segment carrying the ancestral state of the gene

    Technical and Economic Assessment of Span-Distributed Loading Cargo Aircraft Concepts

    Get PDF
    A 700,000 kg (1,540,000-lb) aircraft with a cruise Mach number of 0.75 was found to be optimum for the specified mission parameters of a 272 155-kg (600,000-lb) payload, a 5560-km (3000-n.mi.) range, and an annual productivity of 113 billion revenue-ton km (67 billion revenue-ton n. mi.). The optimum 1990 technology level spanloader aircraft exhibited the minimum 15-year life-cycle costs, direct operating costs, and fuel consumption of all candidate versions. Parametric variations of wing sweep angle, thickness ratio, rows of cargo, and cargo density were investigated. The optimum aircraft had two parallel rows of 2.44 x 2.44-m (8 x 8-ft) containerized cargo with a density of 160 kg/cu m (10 lb/ft 3) carried throughout the entire 101-m (331-ft) span of the constant chord, 22-percent thick, supercritical wing. Additional containers or outsized equipment were carried in the 24.4-m (80-ft) long fuselage compartment preceding the wing. Six 284,000-N (64,000-lb) thrust engines were mounted beneath the 0.7-rad (40-deg) swept wing. Flight control was provided by a 36.6-m (120-ft) span canard surface mounted atop the forward fuselage, by rudders on the wingtip verticals and by outboard wing flaperons

    Chickpea Hybridization Using In Vitro Techniques

    Get PDF
    Tissue culture techniques play an important role in the utilization of wild Cicer species for the improvement of cultivated chickpea. Utilization of wild Cicer species has become essential as a series of evolutionary bottlenecks have narrowed the genetic base of chickpea, thus making it susceptible to a range of diseases and pests. Crosses with wild Cicer can broaden its genetic base and introduce useful traits. Except for two wild species, none of the other Cicer species are cross-compatible. To use a range of Cicer species for the improvement of chickpea, embryo rescue and tissue culture techniques are necessary. The success of the cross with incompatible species depended on a range of techniques including the application of growth regulators to pollinated pistils and saving aborting embryos in vitro. Further, the chances of successful transfer of hybrid shoots to soil are greater if the hybrid shoots are grafted to chickpea stock

    Turboprop Cargo Aircraft Systems study, phase 1

    Get PDF
    The effects of advanced propellers (propfan) on aircraft direct operating costs, fuel consumption, and noiseprints were determined. A comparison of three aircraft selected from the results with competitive turbofan aircraft shows that advanced turboprop aircraft offer these potential benefits, relative to advanced turbofan aircraft: 21 percent fuel saving, 26 percent higher fuel efficiency, 15 percent lower DOCs, and 25 percent shorter field lengths. Fuel consumption for the turboprop is nearly 40 percent less than for current commercial turbofan aircraft. Aircraft with both types of propulsion satisfy current federal noise regulations. Advanced turboprop aircraft have smaller noiseprints at 90 EPNdB than advanced turbofan aircraft, but large noiseprints at 70 and 80 EPNdB levels, which are usually suggested as quietness goals. Accelerated development of advanced turboprops is strongly recommended to permit early attainment of the potential fuel saving. Several areas of work are identified which may produce quieter turboprop aircraft

    The Chickpea Genome: An Introduction

    Get PDF
    Chickpea is the second most important cool season grain legume cultivated by small holder farmers in 59 countries across the globe. Chickpea production is adversely affected by several abiotic stresses like drought, temperature extremes (high and low temperatures), salinity, and biotic stresses, e.g., insect, fungal and viral diseases. Until recently breeding for tolerance/resistance to these stresses has been challenged by lower level of natural variation and lack of genomics tools to adopt genomics-assisted breeding. Nevertheless, during recent years large-scale genomic resources like molecular markers, genetic maps, draft genome sequence of both desi and kabuli chickpea have become available as a result of partnership among different institutes and advances in sequencing technologies. The chickpea genome book provides an up-to-date account on developments made over past ten years and presents the road map for future chickpea research. This chapter introduces the book and provides brief summary of 11 chapters included in the book

    Future Prospects for Chickpea Research

    Get PDF
    Advances in genomics technologies, coupled with the availability of several high-throughput genotyping and sequencing platforms during recent years, provided a kick start to the adoption of modern breeding approaches to develop climate-resilient crops. Chickpea is the most important grain legume crop for global food and nutritional security in the context of population explosion and climate vagaries. During last ten years, it has transformed from orphan legume to genomics resource-rich legume like any other model legume plants. There has been a paradigm shift in the outlook of the scientific community in translating the genomic resources including the genome sequence and re-sequence information for developing superior lines with enhanced resistance or tolerance to important abiotic and biotic stresses. In addition, pan-genome and re-sequencing information of several germplasm lines will enable tailoring climate smart chickpeas. In addition, efforts to broaden the genetic base and enhanced utilization of the available trait-specific germplasm lines, multi-parent advanced generation inter-cross (MAGIC), nested association mapping (NAM) populations in breeding programs will accelerate the genetic grains at a faster pace
    corecore